1 research outputs found

    A Modelling and Experimental Framework for Battery Lifetime Estimation in NB-IoT and LTE-M

    Full text link
    To enable large-scale Internet of Things (IoT) deployment, Low-power wide-area networking (LPWAN) has attracted a lot of research attention with the design objectives of low-power consumption, wide-area coverage, and low cost. In particular, long battery lifetime is central to these technologies since many of the IoT devices will be deployed in hard-toaccess locations. Prediction of the battery lifetime depends on the accurate modelling of power consumption. This paper presents detailed power consumption models for two cellular IoT technologies: Narrowband Internet of Things (NB-IoT) and Long Term Evolution for Machines (LTE-M). A comprehensive power consumption model based on User Equipment (UE) states and procedures for device battery lifetime estimation is presented. An IoT device power measurement testbed has been setup and the proposed model has been validated via measurements with different coverage scenarios and traffic configurations, achieving the modelling inaccuracy within 5%. The resulting estimated battery lifetime is promising, showing that the 10-year battery lifetime requirement specified by 3GPP can be met with proper configuration of traffic profile, transmission, and network parameters.Comment: submitted to IEEE Internet of Things Journal, 12 pages, 10 figure
    corecore